Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 16, 2026
-
Free, publicly-accessible full text available July 13, 2026
-
Per- and polyfluoroalkyl substances (PFAS) have garnered attention as a pressing environmental issue due to their enduring presence and suspected adverse health effects. This study assessed the rejection or removal ef- ficacy of PFAS by commercial reverse osmosis (RO) and nanofiltration (NF) membranes and examined the im- pacts of surfactants, ion valency and solution temperature that are inadequately explored. The results reveal that the presence of cationic surfactants such as cetyltrimethylammonium bromide (CTAB) increased the rejection of two selected PFAS compounds, perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), by binding with negatively charged PFAS and preventing them from passing through membrane pores via size exclusion, whereas the presence of anionic surfactants such as sodium dodecyl sulfate (SDS) increased the PFAS rejection because the increased electrostatic repulsion prevented PFAS from approaching and adsorbing onto the mem- brane surface. Moreover, aqueous ions (e.g., Al³⁺ and PO³−) with higher ion valency enabled higher rejection of PFOA and PFBA through increased effective molecular size and increased electronegativity. Finally, only high solution temperature at 45 ◦C significantly reduced PFAS rejection efficiency because of the thermally expanded membrane pores and thus the increased leakage of PFAS. Overall, this research provides valuable insights into the various factors impacting PFAS rejection in commercial RO and NF processes. These findings are crucial for developing efficient PFAS removal methods and optimizing existing treatment systems, thereby contributing significantly to the ongoing efforts to combat PFAS contamination.more » « less
-
The periaqueductal gray (PAG) is a small midbrain structure that surrounds the cerebral aqueduct, regulates brain–body communication, and is often studied for its role in “fight-or-flight” and “freezing” responses to threat. We used ultra-high-field 7 T fMRI to resolve the PAG in humans and distinguish it from the cerebral aqueduct, examining its in vivo function during a working memory task (N = 87). Both mild and moderate cognitive demands elicited spatially similar patterns of whole-brain blood oxygenation level-dependent (BOLD) response, and moderate cognitive demand elicited widespread BOLD increases above baseline in the brainstem. Notably, these brainstem increases were not significantly greater than those in the mild demand condition, suggesting that a subthreshold brainstem BOLD increase occurred for mild cognitive demand as well. Subject-specific masks were group aligned to examine PAG response. In PAG, both mild and moderate demands elicited a well-defined response in ventrolateral PAG, a region thought to be functionally related to anticipated painful threat in humans and nonhuman animals—yet, the present task posed only the most minimal (if any) “threat,” with the cognitive tasks used being approximately as challenging as remembering a phone number. These findings suggest that the PAG may play a more general role in visceromotor regulation, even in the absence of threat.more » « less
-
Abstract Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function.more » « less
An official website of the United States government
